1130 Chemistry Letters 2002

Synchrotron Radiation Structure Analyses of the Light-induced Radical Pair of a Hexaarylbiimidazolyl Derivative. Origin of the Spin-Multiplicity Change

Masaki Kawano,*†,††† Yoshiki Ozawa,†† Koutatsu Matsubara,†† Hidekazu Imabayashi,†† Minoru Mitsumi,††

Koshiro Toriumi,*†† and Yuji Ohashi*†††

† CREST, Japan Science and Technology Corporation

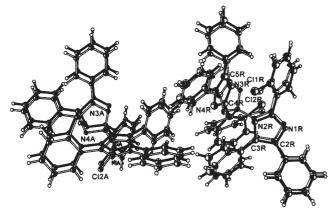
†† Department of Material Science, Himeji Institute of Technology, Hyogo 678-1297

††† Department of Chemistry and Materials Science, Tokyo Institute of Technology, Tokyo 152-8551

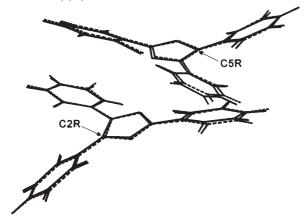
(Received July 29, 2002; CL-020619)

In situ synchrotron radiation structure analyses of a light-induced radical pair from *o*-Cl-HABI were performed by using an X-ray vacuum camera at 23–70 K at the BL02B1 station of SPring-8. The combined results of X-ray analysis with theoretical calculation, IR, and UV-vis spectroscopy reveal that a slight conformational change of the radical pair causes the drastic spin-multiplicity change during 2–140 K.

Open-shell organic compounds have been paid considerable attention in that they provide implication for materials science and basic study on the spin alignment. Spin-multiplicity change is an intriguing subject regarding to molecular bistability.² Crystallographic information is important to clarify the spin dynamics in the molecular bistability. Although a number of radicals have been investigated by spectroscopic methods, a crystallographic approach is rare for unstable radicals,³ particularly for radical pairs. Recently, we succeeded in the in situ crystal structure analysis of a photo-induced unstable radical pair (RP I) in a crystal of 2,2'-di(orthochlorophenyl)-4,4',5,5'-tetraphenylbiimidazole (o-Cl-HABI) at 103 K.⁴ In addition, Abe et al. found that ultraviolet irradiation of a crystal of o-Cl-HABI at 2 K produced a triplet-state radical pair (RP II) having a different D value.⁵ Interestingly, the triplet ESR signal of RP II disappeared at 30-40 K, though a triplet ESR signal of RP I appeared above 40 K. The ground state of RPI is singlet and the thermally excited triplet state is populated at the maximum at 70 K as reported in Ref. 5. We investigated the origin of the spin-multiplicity change of these radical pairs by X-ray crystallography and spectroscopic methods.


X-ray diffraction photographs of o-Cl-HABI were taken at low temperatures (23-70 K) using a synchrotron radiation (12.03 keV) and the low-temperature vacuum X-ray camera with an IP area detector at BL02B1 station. The intensity data were collected with a ϕ -oscillation method. Several sets of intensity data were measured at ca. 30 K before and after photo-irradiation, and 40 and 70 K after irradiation. A crystal with dimensions of $0.25 \times 0.20 \times 0.15 \,\text{mm}^3$ (batch I) or $0.30 \times 0.15 \times 0.12 \,\text{mm}^3$ (batch II) cooled at ca. 30 K was irradiated with a high pressure Hg lamp with a thermal cut filter and a focussed lens for 60 min. The crystallographic data are summarized in Table 1.6 The initial structure before irradiation is substantially the same as the earlier result.4 Figure 1 shows a disordered structure after irradiation at 30 K, which includes the initial molecule and the photo-induced radical pair.7 Figure 2 shows a superimposed structure of the radical pairs at 23 and 70 K. 8 Although frost formation (solid N₂) around a crystal specimen in the intensity measurements hampered accurate analyses, we could obtain the following important knowledge about the photo-induced radical pair:

 $1.\ Although, judging\ from\ EPR, we\ expected\ conformational$


Table 1. Summary of Crystallographic Data

Data set	A1	A2	B1	B2	В3	B4
Crystal batch	I	I	II	II	II	II
	Before	After	Before	After	After	After
	irradiation	irradiation	irradiation	irradiation	irradiation	irradiation
T/K	24(1)	23(1)	33(1)	30(1)	40(1)	70(1)
Space group	Pbca	Pbca	Pbca	Pbca	Pbca	Pbca
a/Å	16.6350(1)	16.613(2)	16.6330(1)	16.6080(3)	16.6170(3)	16.6370(2)
b/Å	17.2740(1)	17.293(3)	17.2660(1)	17.3010(4)	17.3020(4)	17.3100(2)
c/Å	45.8350(3)	45.811(7)	45.8090(3)	45.7880(7)	45.8080(8)	45.8240(5)
$V/\text{Å}^3$	13170.8(1)	13161.0(3)	13155.7(1)	13156.5(4)	13170.1(4)	13196.7(3)
Z	16	16	16	16	16	16
$D_{\rm calcd}$, Mg/m ³	1.331	1.332	1.332	1.332	1.331	1.328
λ/Å	1.032	1.032	1.032	1.032	1.032	1.032
$\theta_{\rm max}$ /deg	45	45	45	45	45	45
No. unique refln	13939	13884	13800	12090	14496	13545
No. obsd refln	11634	11160	11993	9568	12531	11875
$R_1(F)$, % $(I > 2\sigma)$	4.18	7.21	3.79	8.54	9.34	5.99
Residual density						
Max, min, e/Å ³	0.43, -0.42	0.66, -0.65	0.36, -0.42	0.68, -0.98	0.84, -0.96	0.48, -0.75
Population of radical pair, %	0	15.1(3)	0	24.4(3)	21.7(3)	14.3(2)

Chemistry Letters 2002

Figure 1. Thermal ellipsoid (probability level 50%) plot of o-Cl-HABI (open line: left 85.4(6)%, right 75.6(3)% and left solid line: 14.6(7)%; percentage indicates occupancy) and a photo-induced radical pair (right solid line: 24.4(3)%) after UV-irradiation at 30 K.

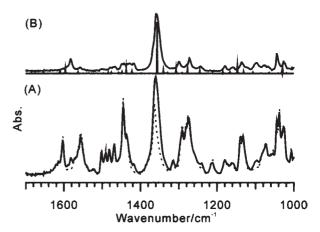


Figure 2. Superimposed view of the structures of photoproducts at $23 \, \text{K}$ (solid lines) and $70 \, \text{K}$ (broken lines). Unreacted *o*-Cl-HABI molecules are omitted for clarity.

change of radical pair, the structure obtained at $23\,\mathrm{K}$ was surprisingly similar to that at $70\,\mathrm{K}$. The conformation of the radical pair slightly changed after thermal activation.

- 2. Below 30 K, ultraviolet irradiation could produce radical pairs in yields as high as 24% without any crystal deterioration.
- 3. Comparing the structures of radical pairs, the observed change $(0.05\,\text{Å})$ of an interatomic distance between the atoms $(C2R\cdots C5R)$, for which the highest spin densities are estimated by density-functional theory calculation, is in good agreement with the estimated change $(0.06\,\text{Å})$ of the distance between unpaired electrons by EPR.

Figure 3 shows the IR spectra of o-Cl-HABI in a KBr matrix before and after ultraviolet irradiation at $5~\mathrm{K}.^{10}$ The difference spectrum between before and after irradiation (scale factor = 0.8) is in excellent agreement with the simulated one of a lophyl radical by UB3LYP/6-31G* level of theory. Temperature-dependent IR measurements show that photo-induced radical pairs survive with no spectral change in the range of $1700-600~\mathrm{cm}^{-1}$ at $5-40~\mathrm{K}.^{11}$ In addition, the UV-vis spectra of the photo-induced radical pair in a KBr matrix at $7-300~\mathrm{K}$ indicate the existence of radical pairs. These facts suggest that a diamagnetic π -dimer rather than a σ -dimer formed with retaining the molecular structure of the lophyl radical during the ESR silent period.

Figure 3. IR spectra before and after UV-irradiation at 5 K. (A) solid line: after irradiation, dot line: before irradiation. (B) difference spectrum between before and after irradiation (scale factor = 0.8). Bar: simulated spectrum by UB3LYP/6-31G* level of theory (scale factor = 0.975).

The combined evidence of X-ray analysis, IR, and UV-vis spectroscopy suggests that a slight conformational change of a radical pair should cause the spin-multiplicity change. This fact implicates that a slight modification of molecular packing could control the spin multiplicity and the magnetic property.

This work was supported by CREST from JST.

References and Notes

- S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, *Science*, 294, 1488 (2001); O. Kahn and C. J. Martinez, *Science*, 279, 44 (1998); J. S. Miller and A. J. Epstein, *Angew. Chem., Int. Ed. Engl.*, 33, 385 (1994); A. Rajca, *Chem. Rev.*, 94, 871 (1994); W. T. Borden, H. Iwamura, and J. A. Berson, *Acc. Chem. Res.*, 27, 109 (1994); M. E. Itkis, X. Chi, A. W. Cordes, and R. C. Haddon, *Science*, 296, 1443 (2002).
- W. Fujita and K. Awaga, *Science*, 286, 261 (1999); K. Okada, T. Imakura, M. Oda, A. Kajiwara, M. Kamachi, and M. Yamaguchi, *J. Am. Chem. Soc.*, 119, 5740 (1997).
- 3 M. Kawano, T. Sano, J. Abe, and Y. Ohashi, Chem. Lett., 2000, 1372.
- 4 M. Kawano, T. Sano, J. Abe, and Y. Ohashi, J. Am. Chem. Soc., 121, 8106 (1999).
- 5 J. Abe, T. Sano, M. Kawano, Y. Ohashi, M. Matsushita, and T. Iyoda, Angw. Chem., Ind. Ed. Engl., 40, 580 (2001).
- 6 Crystallographic details and complete listings have been deposited at the Cambridge Crystallographic Data Center (Deposition No. CCDC 193898-193902).
- 7 The disordered o-Cl-HABI structure, slightly shifted from the original position, showed up, probably because of the large yield. Prior to this work, no disordered part was observed.
- 8 The crystal structure refinements of the 30 and 40 K structures resulted in high residual density (0.68 to -0.98 eÅ⁻³ and 0.84 to -0.94 eÅ⁻³, respectively), which may be due partly to the coexistence of intermediate structures. Structure modeling of the intermediates was unsuccessful.
- 9 Interatomic distances between the atoms (C2R···C5R): 6.28(4) Å at 23 K, 6.23(3) Å at 70 K. Distances between unpaired electrons estimated by EPR: 6.32 Å at 23 K, 6.26 Å at 70 K.
- 10 A single crystal (0.5 × 0.5 × 0.06 mm³) IR spectra were also measured at 5–300 K before and after irradiation. The tendency of spectral change is the same as one in a KBr matrix.
- 11 Spectral change at 30–40 K might be expected in the far-infrared region. Above 50 K, the intensity at 1357 cm⁻¹ characteristic of lophyl radical decreased gradually. The intensity at 70 K decreased by ca. 8% (on a basis of the peak area calculated in the region of 1394–1320 cm⁻¹) compared with that at 40 K.
- 12 The spectra are the same as a solution spectrum in benzene, indicating no absorption attributed to intermolecular interaction.